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This paper presents a study on the electromechanical interaction between a compliant
surface electrode and a semi-infinite piezoelectric material. Using integral transforms,
general expressions of stresses, displacements, electric potential and electric displacement
have been obtained for symmetrically deformed electrode. For surface electrode subjected
to uniform displacement, the normal stress at the edges of the electrode displays a square
root singularity. Such a stress singularity will eventually induce the initiation of crack and
introduce mechanical and electric instability. C© 2004 Kluwer Academic Publishers

1. Introduction
Smart structures using smart materials have potential
applications in many areas, especially in controlling
motion that is related to structural deformation. In these
smart materials, piezoelectric materials, shape mem-
ory alloys, electrostrictive materials, and magnetostrive
materials have been widely used in electromechani-
cal actuators and sensors. The electromechanical cou-
pling in piezoelectric materials provides a fundamental
mechanism for sensing mechanical disturbances from
the measurements of induced electric potentials, and
for controlling structural behavior via external electric
loading. Among piezoelectric materials, piezoelectric
ceramics have been used as displacement actuators be-
cause of their high piezoelectric performance. Such ac-
tuators rely on the concept of multiplayer, in which
electrodes alternate with ceramic layers. The electrodes
are in contact with piezoelectric ceramics and are used
as driving components to control the motion of the mul-
tiplayer stacks. A singularity of electric field and stress
field could be created due to the electroelastic interac-
tion between the electrode and the layer of piezoelectric
material, which could lead to the nucleation and prop-
agation of cracks for relaxing the incompatible strains.

To understand the fracture processes in piezoelectric
ceramics and improve the device design, linear elec-
troelastic fracture mechanics (LEEFM) has been estab-
lished to study the cracking behavior of piezoelectric
materials [1–11]. Many important achievements have
been made in the last several decades, while the study
on the electroelastic interaction due to the contact be-
tween electrode and piezoelectric material is at early
stage. The knowledge of the electromechanical inter-
action is essential for understanding the reliability of
piezoelectric components used in microelectromechan-
ical systems and microtransducers. Recently, Castro
and Sosa [12] studied a two-dimension electromechani-
cal coupling problem on a semi-infinite dielectric solid.
Shindo et al. [13] analyzed electric and stress fields in-

side a semi-infinite piezoelectric medium. Ye and He
[14] considered the singularity of fields in a piezoelec-
tric layer. However, none of the works considers the
dielectric effect due to the surrounding medium, such
as air, which alters the distribution of electric charge
over the surface of piezoelectric medium.

The purpose of this work is to revisit the electrome-
chanical interaction due to a surface electrode attached
to the surface of a semi-infinite piezoelectric material.
The piezoelectric material is subjected to general me-
chanical and electric loading over the electrode. The
classic electric boundary conditions on the surface of
piezoelectric materials are used, which takes account
of the effect of the surrounding dielectric medium on
the deformation of the material. The Fourier transforms
are used to reduce the problem to the solution of a set
of dual integral equations, from which closed-form so-
lutions are obtained.

2. Fundamental electromechanical equations
Consider a linear piezoelectric material, the governing
equations in the Cartesian coordinates xi (i = 1, 2, 3)
are given by

σij,i = 0 and Di,i = 0 (1)

where σij is stress tensor, Di is electric displacement
vector, a comma denotes partial differentiation with re-
spect to the coordinate xi, and the Einstein summa-
tion convention over repeated indices is used. For an
anisotropic piezoelectric material, the constitutive re-
lations are

σij = cijklεkl − ekij Ek and Di = eiklεkl + ∈ik Ek

(2)

where εij is strain tensor, Ei is electric field intensity,
cijkl is elastic stiffness tensor measured in a constant
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electric field intensity, eikl is piezoelectric tensor mea-
sured in a spontaneous electric field, and ∈ik is dielectric
tensor. Crystal symmetry places restrictions among the
elements of any tensor that characterizes the material
properties of a crystal. The interchange symmetry of
the tensors gives

cijkl = cijlk = cjikl = cjilk = cklij,

ekij = ekji, and ∈ij = ∈ji (3)

The relation between the strain tensor and displace-
ment, ui, is

εij = 1

2
(ui,j + uj,i) (4)

and the electric field intensity is related to electric po-
tential, φ, as

Ei = −φ,i (5)

In air, the electric potential satisfies the following
equation

φa
,ii = 0 (6)

with

Da
i = ∈0 Ea

i (7)

which represents the relation between the electric dis-
placement and the electric field intensity, where ∈0 is
the permittivity of free space (Note that the dielectric
constant of air (∈r) is 1). Here the superscript a denotes
the field variables in air.

We consider a transversely isotropic piezoelectric
material of the hexagonal crystal class 6 mm. The con-
stitutive relations are
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ε5
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+




∈11 0 0

0 ∈11 0

0 0 ∈33







E1

E2

E3




where

(
σ1 σ2 σ3 σ4 σ5 σ6

ε1 ε2 ε3 ε4 ε5 ε6

)

=
(

σ11 σ22 σ33 σ23 σ13 σ12

ε11 ε22 ε33 2ε23 2ε13 2ε12

)
c11 = c1111 = c2222, c12 = c1122, c13 = c1133 = c2233,

c33 = c3333, c44 = c2323 = c3131

c66 = c1212 = 1

2
(c11 − c22), e31 = e311 = e322,

e33 = e333, e15 = e113 = e223 (9)

3. General solution of two-dimensional
problems in piezoelectric materials

For two dimensional piezoelectric coupling problems
in plane strain, the governing equations become

c11
∂2u1

∂x2
1

+ c44
∂2u1

∂x2
3

+ (c13 + c44)
∂2u3

∂x1∂x3

+ (e31 + e15)
∂2φ

∂x1∂x3
= 0

(c13 + c44)
∂2u1

∂x1∂x3
+ c44

∂2u3

∂x2
1

+ c33
∂2u3

∂x2
3

(10)

+ e15
∂2φ

∂x2
1

+ e33
∂2φ

∂x2
3

= 0

(e31 + e15)
∂2u1

∂x1∂x3
+ e15

∂2u3

∂x2
1

+ e33
∂2u3

∂x2
3

− ∈11
∂2φ

∂x2
1

− ∈33
∂2φ

∂x2
3

= 0

which can be expressed as

[D]




u1

u3

φ


 =




0

0

0


 (11)

Here the operator [D] is defined as

[D]

=




c11
∂2

∂x2
1

+ c44
∂2

∂x2
3

(c13 + c44) ∂2

∂x1∂x3
(e31 + e15) ∂2

∂x1∂x3

(c13 + c44) ∂2

∂x1∂x3
c44

∂2

∂x2
1

+ c33
∂2

∂x2
3

e15
∂2

∂x2
1

+ e33
∂2

∂x2
3

(e31 + e15) ∂2

∂x1∂x3
e15

∂2

∂x2
1

+ e33
∂2

∂x2
3

−
(
∈11

∂2

∂x2
1
+ ∈33

∂2

∂x2
3

)




(12)
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The determinant of [D] is

det[D] = a
∂6

∂x6
3

+b
∂6

∂x4
3∂x2

1

+c
∂6

∂x2
3∂x4

1

+d
∂6

∂x6
1

(13)

in which

a = −c44
(
e2

33 + c33 ∈33
)

b = [
2e33c13(e31 + e15

)+ ∈33 (c13 + c44)2

− c11
(
e2

33 + c33 ∈33
) − c44(c33 ∈11 +c44 ∈33

− 2e33e31) − c33(e31 + e15)2]
c = [

2e15(e31 + e15)(c13 + c44)+ ∈11 (c13 + c44)2

− c11(c44 ∈33 +c33 ∈11 +2e33e15)

− c44
[
e2

15 + c44 ∈11 +(e31 + e15)2]]
d = −c11

(
e2

15 + c44 ∈11
)

(14)

Based on the cofactors �ij of det [D] (i, j = 1, 2, 3),
the general solutions of Equation 11 are




u1

u3

φ


 =




�11 �21 �31

�12 �22 �32

�13 �23 �33







F1

F2

F3


 (15)

with Fi (i = 1, 2, 3) satisfying the equation

det [D]




F1

F2

F3


 =




0

0

0


 (16)

Obviously, (F1, 0, 0), (0, F2, 0) and (0, 0, F3) are the
solutions of Equation 15. For the problems symmetric
about x3-axis, we only consider the general solution (0,
F , 0) in the following analysis, in which F is a function
to be determined. The corresponding cofactors, (�21,
�22, �23), are

�21 = α1
∂4

∂x3
1∂x3

+ α2
∂4

∂x1∂x3
3

�22 = −c11 ∈11
∂4

∂x4
1

− α3
∂4

∂x2
1∂x2

3

− c44 ∈33
∂4

∂x4
3

�23 = −c11e15
∂4

∂x4
1

− α4
∂4

∂x2
1∂x2

3

− c44e33
∂4

∂x4
3

(17)

where




α1
α2
α3
α4


 =




(c13 + c44) ∈11 +(e15 + e31)e15

(c13 + c44) ∈33 +(e15 + e31)e33

c11 ∈33 +c44 ∈11 +(e15 + e31)2

c13e33 − c13(e15 + e31) − c44e31


 (18)

Using the symmetry on x3-axis, one can take the cosine
Fourier transform and express F as

F = 2

π

∫ ∞

0
f (ξ, x3) cos(x1ξ ) dξ (19)

Equation 16 gives

a
d6 f

dx6
3

− bξ 2 d4 f

dx4
3

+ cξ 4 d2 f

dx2
3

− dξ 6 = 0 (20)

which is a homogeneous equation. The solution of f is
a function of exp(λξ x3), in which λ are the roots of the
characteristic equation

aλ6 − bλ4 + cλ2 − d = 0 (21)

Here we only consider the lower plane (x3 > 0),
in which the fields approach constant values as x3 →
∞. Depending on the properties of λ2, there are four
different general solutions of function f .

a) λ2
1 �= λ2

2 �= λ2
3 > 0

f = β1e−λ1ξ x3 + β2e−λ2ξ x3 + β3e−λ3ξ x3 (22)

b) λ2
1 �= λ2

2 = λ2
3 > 0

f = β1e−λ1ξ x3 + β2e−λ2ξ x3 + β3ξ x3e−λ2ξ x3

(23)

c) λ2
1 = λ2

2 = λ2
3 > 0

f = β1e−λ1ξ x3 + β2ξ x3e−λ1ξ x3 + β3ξ
2x2

3 e−λ1ξ x3

(24)

d) λ2
1 > 0 and λ2

2, λ
2
3 < 0 or λ2

2 and λ2
3 being a pair

of conjugate complex roots

In this case, the λ2 and λ3 are a pair of conjugate
complexes −δ ± iω. The solution of f is

f = β1e−λ1ξ x3 + β2e−δξ x3 cos ωξ x3

+ β3e−δξ x3 sin ωξ x3 (25)

where δ and ω > 0 and βi (i = 1, 2, 3) is a function of
ξ to be determined by the boundary conditions.

Using Equations 22–25 and 15 and 17, the displace-
ment, stresses, electric and potential fields for the prob-
lems symmetric about x3-axis can be readily obtained.
The expressions of the displacement, stresses, electric
and potential fields are given in Appendix A.

4. Two-dimensional contact problem
Consider a compliant electrode of length 2a0 being at-
tached to the surface of a semi-infinite piezoelectric
medium (x3 > 0) as shown in Fig. 1, in which the
axis ox3 is the axis of the hexagonal symmetry of the
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Figure 1 Schematic diagram of a piezoelectric material with a rigid
electrode under mechanical and electric loading.

piezoelectric crystal. External normal load and electri-
cal potential are applied to the electrode. The electric
boundary conditions at the interface between the piezo-
electric medium and air are

φ(x1, 0+) = φa(x1, 0−) and

D3(x1, 0+) = Da
3(x1, 0−) for |x1| > a0 (26)

The stress boundary conditions are

σ13(x1, 0) = 0 (27)

for the frictionless boundary condition, and

σ33(x1, 0) = 0 for |x1| > a0 (28)

In the contact zone between the electrode and the sur-
rounding mediums, the electric boundary conditions
are

φ(x1, 0+) = φa(x1, 0−) = φ0 for |x1| < a0 (29)

and the displacement boundary is

u3(x1, 0) = u0(x1) for |x1| < a0 (30)

where u0(x1) is the surface displacement in the con-
tact zone between the electrode and the piezoelectric
medium.

Applying the symmetry on x3-axis and the condition
φa → 0, as x3 → −∞, one can express the electric
potential distribution in the air as

φa = 2

π

∫ ∞

0
βaeξ x3 cos x1ξdξ for x3 < 0 (31)

where βa is a constant to be determined.
Using the boundary conditions (26–30) and the field

distributions given in Appendix A and Equation 31, one
obtains the following equations,

(i) for the shear stress

b11β1 + b12β2 + b13β3 = 0 (32)

(ii) for the electric potential

(b21β1 + b22β2 + b23β3)ξ 4 = βa (33)

2

π

3∑
i=1

b2i

∫ ∞

0
βiξ

4 cos(ξ x1) dξ = φ0

for |x1| < a0 (34)

(iii) for the normal stress

2

π

3∑
i=1

b3i

∫ ∞

0
βiξ

5 cos(ξ x1) dξ = 0

for |x1| > a0 (35)

(iv) for the displacement

2

π

3∑
i=1

b4i

∫ ∞

0
βiξ

4 cos(ξ x1) dξ = −u0(x1)

for |x1| < a0 (36)

(v) for the electric displacement

3∑
i=1

b5i

∫ ∞

0
βiξ

5 cos(ξ x1) dξ

= −∈0

∫ ∞

0
βaξ cos(ξ x1) dξ for |x1| > a0

(37)

where bij (i = 1, 2, 3, 4, 5 and j = 1, 2, 3) as given
in Appendix B are constants depending on the material
properties of piezoelectric materials.

Using Equations 32 and 33, one obtains

βa = −b23b11 − b13b21

b13
β1ξ

4 − b23b12 − b13b22

b13
β2ξ

4

(38)

β3 = −b11

b13
β1 − b12

b13
β2 (39)

Substituting Equations 38 and 39 into Equations 34–37,
we have

∫ ∞

0
(A11β1 + A12β2)ξ 5 cos(ξ x1) dξ = 0 for |x1| > a0

(40)

for the normal stress,

∫ ∞

0
(A21β1 + A22β2)ξ 4 cos(ξ x1) dξ = −u0(x1)

for |x1| < a0 (41)

for the displacement,

∫ ∞

0
(C11β1 + C12β2)ξ 5 cos(ξ x1) dξ = 0 for |x1| > a0

(42)
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for the electric displacement, and

∫ ∞

0
(C21β1 + C22β2)ξ 4 cos(ξ x1) dξ = φ0 for |x1| > a0

(43)

for the electric potential. Here

A11 = b31b13 − b11b33 and A12 = b32b13 − b12b33

A21 = 2

π
· b41b13 − b11b43

b13
and

A22 = 2

π
· b42b13 − b12b43

b13

C11 = b51b13 − b53b11+ ∈0 (b21b13 − b23b11) (44)

C12 = b52b13 − b53b12+ ∈0 (b22b13 − b23b12)

C21 = 2

π
· b21b13 − b11b23

b13
and

C22 = 2

π
· b22b13 − b12b23

b13

Due to the electromechanical coupling in the piezoelec-
tric material, the displacement and electric displace-
ment are dependent on the electrical potential and me-
chanical loading. This suggests,

A11C12 − A12C11 �= 0 and A21C22 − A22C21 �= 0

(45)

(For decoupling problem such as the problems of elastic
contact, Equations 40–43 reduces to a set of decoupled
dual integral equations immediately.) Thus, the cou-
pling dual integral Equations 40–43 can be reduced to
the following decoupled dual integral equations.

∫ ∞

0
β1ξ

4 cos(ξ x1) dξ = F1(x1) for |x1| < a0 (46)

∫ ∞

0
β1ξ

5 cos(ξ x1) dξ = 0 for |x1| > a0 (47)

and

∫ ∞

0
β2ξ

4 cos(ξ x1) dξ = F2(x1) for |x1| < a0 (48)

∫ ∞

0
β2ξ

5 cos(ξ x1) dξ = 0 for |x1| > a0 (49)

where

F1(x1) = −C12u0(x1) + A12φ0

A11C12 − A12C11
(50)

F2(x1) = −C11u0(x1) + A11φ0

A11C12 − A12C11
(51)

The dual integral Equations 46 and 47 and 48 and 49
are a special case of a pair of dual integral equations as

discussed by Sneddon [15]. The complete solutions are

β1(ξ ) = 2a0

πξ 4

(
−J1(a0ξ )

∫ 1

0

F1(a0 y) dy√
1 − y2

+
∫ 1

0

dt√
1 − t2

∫ 1

0
a0 yF1(a0 yt)J0(a0 yξ ) dy

)

(52)

β2(ξ ) = 2a0

πξ 4

(
−J1(a0ξ )

∫ 1

0

F2(a0 y) dy√
1 − y2

+
∫ 1

0

dt√
1 − t2

∫ 1

0
a0 yF2(a0 yt)J0(a0 yξ ) dy

)

(53)

Now, consider the plane electrode subjected to a uni-
form displacement, u0(x1) = u0 over the contact zone.
Since both functions F1(x1) and F2(x1) are constants,
no solution can be obtained from Equations 52 and
53. Following the two-dimensional contact problem
in linear elastic theory [16], the boundary conditions
Equations 29 and 30 are rewritten as

∂φ(x1, 0±)

∂x1
= 0 and

∂u3(x1, 0)

∂x1
= 0 for |x1| < a0

(54)

Using the same procedure, the Equations 46 and 48
become∫ ∞

0
β1ξ

5 sin(ξ x1) dξ = 0 for |x1| < a0 (55)

∫ ∞

0
β2ξ

5 sin(ξ x1) dξ = 0 for |x1| < a0 (56)

Together with Equations 47 and 49, the solutions of the
dual integral equations are

β1 = α1
2

π
· J0(a0ξ )

ξ 5
and β2 = α2

2

π
· J0(a0ξ )

ξ 5
(57)

where α1 and α2 are two constants to be determined.
Substituting Equation 57 into Equations 38 and 39, we
obtain

β3 = − 2

π
· J0(a0ξ )

b13ξ 5
(α1b11 + α2b12) (58)

βa = − 2

π
· J0(a0ξ )

b13ξ
[α1(b23b11 − b13b21)

+ α2(b23b12 − b13b22)] (59)

In the contact zone (|x1| < a0), the normal stress is

σ33 = 4

π2b13
(A11α1 + A12α2)

∫ ∞

0
J0(a0ξ ) cos(ξ x1) dξ

= 4

π2
· A11α1 + A12α2

b13

√
a2

0 − x2
1

(60)
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and the charge density is

ρ = 4

π2b13
(D11α1 + D12α2)

∫ ∞

0
J0(a0ξ ) cos(ξ x1) dξ

= 4

π2
· D11α1 + D12α2

b13

√
a2

0 − x2
1

(61)

where

D11 = b51b13 − b53b11 and D12 = b52b13 − b53b12

(62)

Both the normal stress and the electric charge density
demonstrate the square root singularity at both edges
of the electrode. Such a stress singularity may induce
the initiation of edge crack and cause the delamina-
tion of the electrode from the piezoelectric materials.
Eventually, this will lead to mechanical and electric
instability.

If the total load applied to the electrode is P , there
is

P = −
∫ a0

−a0

σ33dx1 = − 4

π
· A11α1 + A12α2

b13
(63)

If the total electric charge stored in the electrode is Q,
we have

Q =
∫ a0

−a0

ρdx1 = 4

π
· D11α1 + D12α2

b13
(64)

Equations 63 and 64 gives

α1 = πb13(D12 P + A12 Q)

4(A12 D11 − A11 D12)
and

α2 = −πb13(D11 P + A11 Q)

4(A12 D11 − A11 D12)
(65)

Using Equation 65, the constants βi (i = 1, 2, 3) and
βa are

β1 = b13

2
· J0(a0ξ )

ξ 5
· (D12 P + A12 Q)

(A12 D11 − A11 D12)

β2 = −b13

2
· J0(a0ξ )

ξ 5
· (D11 P + A11 Q)

(A12 D11 − A11 D12)

(66)
β3 = −1

2
· J0(a0ξ )

ξ 5

· (D12b11 − D11b12)P + (A12b11 − A11b12)Q

(A12 D11 − A11 D12)

βa = −1

2
· J0(a0ξ )

ξ
· 1

(A12 D11 − A11 D12)
[[D12(b23b11

− b13b21) − D11(b23b12 − b13b22)]P

+ [A12(b23b11 − b13b21)

− A11(b23b12 − b13b22)]Q]

TABLE I Material properties of PZT-4 piezoelectric ceramics

Elastic constants (1010 N/m2)

c11 c12 c13 c33 c44

13.9 7.78 7.43 11.3 2.56

Dielectric permittivities
Piezoelectric constants (C/m2) (10−9 C/Vm)

e31 e33 e15 ∈11 ∈33

−6.98 13.84 13.44 6.00 5.47

Substituting Equation 65 into Equations 60 and 61,
there are

σ33 = − 1

π
· P√

a2
0 − x2

1

and ρ = 1

π
· Q√

a2
0 − x2

1

(67)

The normal stress distribution in the contact zone is
the same as that for the two-dimension plane-contact
problem [16] and is independent of the electric volt-
age on the electrode. On the other side, the electric
charge in the electrode does not depend on the load
applied to the electrode. Different from the parallel ca-
pacitor, non-uniform distribution of electric charge over
the electrode is found.

5. Numerical results and discussions
Numerical results for the distribution of stresses inside
a semi-infinite material are presented here for PZT-4
piezoelectric ceramics and the total electric charge in
the contact zone being zero (Q = 0). The poling direc-
tion is assumed to be parallel to the x3-axis. Its material
properties are listed in Table I [5], where the unit of the
force is in Newton (N ), the unit of the electric charge in
Coulomb (C), the unit of the electric voltage in volt (V ),
and the unit of the length in meter (m). The eigenvalues
of the characteristic Equation 20 are

λ1,2 = ±1.19103, λ3,4 = −1.08707 ± 0.27439i,

λ5,6 = 1.08707 ± 0.27439i

Figure 2 Electric potential distribution on the surface of the PZT-4
ceramics.
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Figure 3 Electric displacement distribution underneath the electrode
(x1 = 0).

It is obvious that case (d) of Equation 24 does exist
for piezoelectric materials. Fig. 2 shows the distribu-
tion of electric potential on the surface of the semi-
infinite piezoelectric material. As expected, a uniform
and nonzero electric potential in the contact zone is ob-
served, which is induced by the external force applied
to the electrode. The electric potential underneath the
electrode reaches the maximum the same as that of
the electrode, then it decreases with the distance away
from the electrode. The distribution of the electric dis-
placement along the x3 axis is shown in Fig. 3. It has
the value of zero at the surface of the PZT-4 ceram-
ics, which satisfies the requirement of total electric
charge at the electrode being zero (Q = 0). It is in-
teresting that the electric displacement starts at zero in
the contact zone, reaches the minimum at the depth of
x3/a0 = 1, then gradually increases with the distance
away from the electrode. This indicates that, underneath
the electrode the piezoelectric material experiences the
strongest electromechanical interaction at the location
of x3/a0 = 1.

Fig. 4 displays the distribution of the displacement
component u1 along the x1 axis. For the given condition,
the surface of the PZT-4 ceramics near the electrode is
moved toward the edges of the electrode. However, ma-
terial underneath the electrode (x3/a0 > 1) is squeezed
out because of the mass conservation. The normal dis-
placement of the PZT-4 ceramics underneath the elec-

Figure 4 Distribution of displacement component u1 along the x1 axis.

Figure 5 Distribution of displacement component u3 along the x3 axis
at x1 = 0.

trode is shown in Fig. 5. The PZT-4 ceramics is pushed
downward. The normal displacement at x1 = 0 is the
same as the displacement applied to the electrode if
x3/a0 < 0.5, then it starts to decreases. A dramatic
drop occurs at x3/a0 = 1, which is the same as the
location with the minimum electric displacement, sug-
gesting the strongest electromechanical coupling un-
derneath the electrode in the piezoelectric material.

Fig. 6 shows the stresses distribution underneath the
electrode. The shear stress is found to be zero at x1 = 0
because of the symmetry. However away from the sym-
metric plane, it starts at zero on the surface of the PZT-4
ceramics, decreases to the minimum at x1/a0 = 0.25,
then increases. For the normal stress, the magnitude

(a)

(b)

Figure 6 (a) Shear stress distribution along the x3 direction at x1/

a0 = 1, (b) Normal stress distribution along the x3 direction at x1 = 0.
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starts at the maximum, then gradually decreases and
approaches zero with the distance away from the elec-
trode. The maximum stress in the piezoelectric materi-
als occurs at the interface between the electrode and
the piezoelectric material. When subjected to larger
displacement, the electrode may be detached from the
piezoelectric material due to the nucleation and propa-
gation of interfacial crack. This will lead to mechanical
and electric failure.

6. Conclusion
The electroelastic problem of a compliant electrode at-
tached onto the surface of a semi-infinite piezoelectric
material was studied by using the appropriate electri-
cal boundaries and considering the effect of the sur-
rounding dielectric medium. The dielectric medium
was treated as air. General solutions for a transversely
isotropic piezoelectric material of the hexagonal crystal
class 6 mm have been given in the analysis. Using the
general solutions, closed form solutions of field vari-
ables including electric potential, electric displacement
field, displacement field, and stresses field for symmet-
ric shape of compliant electrodes were obtained by us-
ing the Fourier transform and dual integral equations.
For a plane electrode subjected to a uniform displace-
ment, the distribution of the normal stress in the con-
tact zone is the same as in the elastic contact theory. A
square root singularity of the normal stress and charge
density at the edges of the electrode was found. Such
high stress at the edges of the electrode will eventually
induce the initiation of crack and cause mechanical and
electric failure.
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Appendix A
Based on the solution of the auxiliary function f , the
displacement, stresses, electric, and potential field in
the upper plane can be easily calculated by using Mathe-
matica. Here, we give only the field functions forλ2

1 > 0
and λ2

2, λ
2
3 < 0 or λ2

2 and λ2
3 being a pair of conjugate

complex roots (λ2, λ3 = γ ± iω).

u1 = 2

π
λ1

( −α1 + α2λ
2
1

) ∫ ∞

0
β1ξ

4 sin(ξ x1)e−λ1ξ x3 dξ

+ 2

π

∫ ∞

0
β2ξ

4 sin(ξ x1)e−γ ξ x3 dξ

× [( − α1 + α2γ
2 − 3α2ω

2)γ cos(ωξ x3)

− (α1 − 3α2γ
2 + α2ω

2)ω sin(ωξ x3)]

+ 2

π

∫ ∞

0
β3ξ

4 sin(ξ x1)e−γ ξ x3 dξ

× [(α1 − 3α2γ
2 + α2ω

2)ω cos(ωξ x3)

− (α1 − α2γ
2 + 3α2ω

2)γ sin(ωξ x3)] (A1)

u3 = − 2

π

(
c11 ∈11 −α3λ

2
1 + c44 ∈33 λ4

1

)

×
∫ ∞

0
β1ξ

4 cos(ξ x1)e−λ1ξ x3 dξ

− 2

π

∫ ∞

0
β2ξ

4 cos(ξ x1)e−γ ξ x3 dξ [(c11 ∈11 −α3γ
2

+ α3ω
2 + (γ 4 − 6γ 2ω2 + ω4)c44 ∈33) cos(ωξ x3)

− 2γω(α3 − 2c44 ∈33 (γ 2 − ω2)) sin(ωξ x3)]

− 2

π

∫ ∞

0
β3ξ

4 cos(ξ x1)eλξ x3 dξ

× [2γω(α3 − 2c44 ∈33 (γ 2 − ω2)) cos(ωξ x3)

+ (c11 ∈11 −α3γ
2 + α3ω

2

+ (γ 4 − 6γ 2ω2 + ω4)c44 ∈33) sin(ωξ x3)] (A2)

φ = − 2

π

(
c11e15 − α4λ

2
1 + c44e33λ

4
1

)
×

∫ ∞

0
β1ξ

4 cos(ξ x1)e−λ1ξ x3 dξ

− 2

π

∫ ∞

0
β2ξ

4 cos(ξ x1)e−γ ξ x3 dξ

× [−2γω(α4 − 2c44e33(γ 2 − ω2)) sin(ωξ x3)

+ (c11e15 − α4γ
2 + α4ω

2 + (γ 4 − 6γ 2ω2 + ω4)

× c44e33) cos(ωξ x3)]

− 2

π

∫ ∞

0
β3ξ

4 cos(ξ x1)e−γ ξ x3 dξ

× [2γω(α4 − 2c44e33(γ 2 − ω2)) cos(ωξ x3)

+ (c11e15 − α4γ
2 + α4ω

2

+ (γ 4 − 6γ 2ω2 + ω4) c44e33) sin(ωξ x3)] (A3)

E1 = − 2

π

(
c11e15 − α4λ

2
1 + c44e33λ

4
1

)
×

∫ ∞

0
β1ξ

5 sin(ξ x1)e−λ1ξ x3 dξ

− 2

π

∫ ∞

0
β2ξ

5 sin(ξ x1)e−γ ξ x3 dξ

× [−2γω(α4 − 2c44e33(γ 2 − ω2)) sin(ωξ x3)

+ (c11e15 − α4γ
2 + α4ω

2

+ (γ 4 − 6γ 2ω2 + ω4) c44e33) cos(ωξ x3)]

− 2

π

∫ ∞

0
β3ξ

5 sin(ξ x1)e−γ ξ x3 dξ

× [2γω(α4 − 2c44e33(γ 2 − ω2)) cos(ωξ x3)

+ (c11e15 − α4γ
2 + α4ω

2 + (γ 4 − 6γ 2ω2 + ω4)

× c44e33) sin(ωξ x3)] (A4)

E3 = − 2

π
λ1

(
c11e15 − α4λ

2
1 + c44e33λ

4
1

)
×

∫ ∞

0
β1ξ

5 cos(ξ x1)e−λ1ξ x3 dξ

− 2

π

∫ ∞

0
β2ξ

5 cos(ξ x1)e−γ ξ x3 dξ
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× [(c11e15 + α4ω
2 − 3α4γ

2

+ (γ 4 − 10γ 2ω2 + 5ω4)c44e33)ω sin(ωξ x3)

+ (c11e15 − α4γ
2 + 3α4ω

2 + (γ 4 − 10γ 2ω2

+ 5ω4) c44e33)γ cos(ωξ x3)]

− 2

π

∫ ∞

0
β3ξ

5 cos(ξ x1)e−γ ξ x3 dξ

× [(c11e15 − α4γ
2 + 3α4ω

2

+ (γ 4 − 10γ 2ω2 + 5ω4)c44e33)γ sin(ωξ x3)

+ (c11e15 − α4ω
2 + 3α4γ

2 − (5γ 4 − 10γ 2ω2

+ ω4) c44e33)ω cos(ωξ x3)] (A5)

σ11 = 2

π
λ1

[
c11

( −α1 + α2λ
2
1

) + c13
(
c11 ∈11 −α3λ

2
1

+ c44 ∈33 λ4
1

) + e31
(
c11e15 − α4λ

2
1 + c44e33λ

4
1

)]
×

∫ ∞

0
β1ξ

5 cos(ξ x1)e−λ1ξ x3 dξ

+ 2

π

∫ ∞

0
β2ξ

5 cos(ξ x1)e−γ ξ x3 dξ

× [(c11γ (−α1 + α2γ
2 − 3α2ω

2)

+ c13γ (c11 ∈11 −α3γ
2 + 3α3ω

2

+ c44 ∈33 (γ 4 − 10γ 2ω2 + 5ω4))

+ e31γ (c11e15 − α4γ
2 + 3α4ω

2

+ c44e33(γ 4 − 10γ 2ω2 + 5ω4))) cos(ωξ x3)

+ (c11ω(−α1 + 3α2γ
2 − α2ω

2)

+ c13ω(c11 ∈11 −3α3γ
2 + α3ω

2

+ c44 ∈33 (5γ 4 − 10γ 2ω2 + ω4))

+ e31ω(c11e15 − 3α4γ
2 + α4ω

2

+ c44e33(5γ 4 − 10γ 2ω2 + ω4))) sin(ωξ x3)]

+ 2

π

∫ ∞

0
β3ξ

5 cos(ξ x1)e−γ ξ x3 dξ

× [(c11ω(α1 − 3α2γ
2 + α2ω

2)

− c13ω(c11 ∈11 −3α3γ
2 + α3ω

2

+ c44 ∈33 (5γ 4 − 10γ 2ω2 + ω4))

− e31ω(c11e15−3α4γ
2 + α4ω

2

+ c44e33(5γ 4 − 10γ 2ω2 + ω4))) cos(ωξ x3)

+ (c11γ (−α1 + α2γ
2 − 3α2ω

2)

+ c13γ (c11 ∈11 −α3γ
2 + 3α3ω

2

+ c44 ∈33 (γ 4 − 10γ 2ω2 + 5ω4))

+ e31γ (c11e15 − α4γ
2 + 3α4ω

2

+ c44e33(γ 4−10γ 2ω2 + 5ω4))) sin(ωξ x3)]

(A6)

σ33 = 2

π
λ1[c13

( −α1 + α2λ
2
1

)
+ c13

(
c11 ∈11 −α3λ

2
1 + c44 ∈33 λ4

1

)

+ e33
(
c11e15 − α4λ

2
1 + c44e33λ

4
1

)]
×

∫ ∞

0
β1ξ

5 cos(ξ x1)e−λ1ξ x3 dξ

+ 2

π

∫ ∞

0
β2ξ

5 cos(ξ x1)e−γ ξ x3 dξ

× [(c13γ (−α1 + α2γ
2 − 3α2ω

2)

+ c33γ (c11 ∈11 −α3γ
2 + 3α3ω

2

+ c44 ∈33 (γ 4 − 10γ 2ω2 + 5ω4))

+ e33γ (c11e15 − α4γ
2 + 3α4ω

2

+ c44e33(γ 4 − 10γ 2ω2 + 5ω4))) cos(ωξ x3)

+ c33ω(c11 ∈11 −3α3γ
2 + α3ω

2

+ c44 ∈33 (5γ 4 − 10γ 2ω2 + ω4))

+ e33ω(c11e15 − 3α4γ
2 + α4ω

2

+ c44e33(5γ 4 − 10γ 2ω2 + ω4))) sin(ωξ x3)]

+ 2

π

∫ ∞

0
β3ξ

5 cos(ξ x1)e−γ ξ x3 dξ

× [(c13ω(α1 − 3α2γ
2 + α2ω

2)

− c33ω(c11 ∈11 −3α3γ
2 + α3ω

2

+ c44 ∈33 (5γ 4−10γ 2ω2 + ω4))

− e33ω(c11e15 −3α4γ
2 + α4ω

2

+ c44e33(5γ 4 − 10γ 2ω2 + ω4))) cos(ωξ x3)

+ (c13γ (−α1 + α2γ
2 − 3α2ω

2)

+ c33γ (c11 ∈11 −α3γ
2 + 3α3ω

2

+ c44 ∈33 (γ 4 − 10γ 2ω2 + 5ω4))

+ e33γ (c11e15 − α4γ
2 + 3α4ω

2

+ c44e33(γ 4 − 10γ 2ω2 + 5ω4))) sin(ωξ x3)]

(A7)

σ13 = 2

π

[−c44λ
2
1

( −α1 + α2λ
2
1

) + c44
(
c11 ∈11 −α3λ

2
1

+ c44 ∈33 λ4
1

) + e15
(
c11e15 − α4λ

2
1 + c44e33λ

4
1

)]
×

∫ ∞

0
β1ξ

5 sin(ξ x1)e−λ1ξ x3 dξ

+ 2

π

∫ ∞

0
β2ξ

5 sin(ξ x1)e−γ ξ x3 dξ

× [(c44γ
2(α1 − α2γ

2 + 6α2ω
2)

+ c44(c11 ∈11 −α3γ
2 + α3ω

2

+ c44 ∈33 (γ 4 − 6γ 2ω2 + ω4)

− ω2(α1 + α2ω
2)) + e15(c11e15 − α4γ

2 + α4ω
2

+ c44e33(γ 4 − 6γ 2ω2 + ω4))) cos(ωξ x3)

+ 2γω(c44(α1 − α3 − 2α2γ
2 + 2α2ω

2

+ 2c44 ∈33 (γ 2 − ω2)) + e15(−α4 + 2c44e33

× (γ 2 − ω3))) sin(ωξ x3)]

+ 2

π

∫ ∞

0
β3ξ

5 sin(ξ x1)e−γ ξ x3 dξ
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× [2γω(−c44(α1 − α3 − 2α2γ
2 + 2α2ω

2

+ 2c44 ∈33 (γ 2 − ω2))

+ e15(α4 − 2c44e33(γ 2 − ω2))) cos(ωξ x3)

+ (c44γ
2(α1 − α2γ

2 + 6α2ω
2)

+ c44(c11 ∈11 −α3γ
2 + α3ω

2 + c44 ∈33

× (γ 4 − 6γ 2ω2 + ω4) − ω2(α1 + α2ω
2))

+ e15(c11e15 − α4γ
2 + α4ω

2 + c44e33

× (γ 4 − 6γ 2ω2 + ω4))) sin(ωξ x3)] (A8)

Appendix B
Based on the solution of the auxiliary function f , con-
stants c can be obtained from Appendix A by setting
x3 = 0. Here, only the constants x3 = 0 for λ2

1 > 0
and λ2

2, λ2
3 < 0 or λ2

2 and λ2
3 being a pair of conjugate

complex roots (λ2, λ3 = γ ± iω) are given as follows:

b11 = c44λ
2
1

(
α1 − α2λ

2
1

)
+ c44

(
c11 ∈11 −α3λ

2
1 + c44 ∈33 λ4

1

)
+ e15

(
c11e15 − α4λ

2
1 + c44e33λ

4
1

)
(B1)

b12 = c44γ
2(α1 − α2γ

2 + 3α2ω
2)

+ c44[c11 ∈11 −α3(γ 2 − ω2)

+ c44 ∈33 (γ 4 + ω4) − 6c44 ∈33 γ 2ω2]

− c44ω
2(α1 − 3α2γ

2 + α2ω
2)

+ e15[c11e15 − α4(γ 2 − ω2)

+ c44e33(γ 4 + ω4) − 6c44e33γ
2ω2]

b13 = −2c44γω[α1 + α3 − 2α2γ
2 + 2α2ω

2

− 2c44 ∈33 (γ 2 − ω2)]

+ 2e15γω[α4 − 2c44e33(γ 4 − ω4)]

b21 = −c11e15 + α4λ
2
1 − c44e33λ

4
1 (B2)

b22 = c11e15 − α4(γ 2 − ω2)

+ c44(γ 4 − 6e33γ
2ω2 + e33ω

4)

b23 = 2γω[α4 − 2c44e33(γ 2 − ω2)]

b31 = c13λ1
( −α1 + α2λ

2
1

)
+ c33λ1

(
c11 ∈11 −α3λ

2
1 + c44 ∈33 λ4

1

)
+ e33λ1

(
c11e15 −α4λ

2
1 + c44e33λ

4
1

)
(B3)

b32 = −c13γ (α1 − α2γ
2 + 3α2ω

2)

+ c33γ [c11 ∈11 − α3(γ 2 − ω2)

+ c44 ∈33 (γ 4 + ω4) − 6c44 ∈33 γ 2ω2]

+ e33γ [c11e15 − α4(γ 2−3ω2)

+ c44e33(γ 4 + 5ω4) − 10c44e33γ
2ω2]

+ 2c33γω2[α3 − 2c44 ∈33 (γ 2 − ω2)]

b33 = c13ω(α1 − 3α2γ
2 + α2ω

2)

− c33ω[c11 ∈11 −α3(γ 2 − ω2)

+ c44 ∈33 (γ 4 + ω4) − 6c44 ∈33 γ 2ω2]

− e33γ [c11e15 − α4(3γ 2 − ω2)

+ c44e33(5γ 4 + ω4) − 10c44e33γ
2ω2]

+ 2c33γ
2ω[α3 − 2c44 ∈33 (γ 2 − ω2)]

b41 = c11 ∈11 −α3λ
2
1 + c44 ∈33 λ4

1 (B4)

b42 = c11 ∈11 −α3(γ 2 − ω2)

+ c44 ∈33 (γ 4 + ω4) − 6c44 ∈33 γ 2ω2

b43 = 2γω[α3 − 2c44 ∈33 ω2(γ 2 − ω2)]

b51 = λ1
( − α1 + α2λ

2
1

)
+ λ1

(
c11 ∈11 −α3λ

2
1 + c44 ∈33 λ4

1

)
− ∈33 λ1

(
c11e15 − α4λ

2
1 + c44e33λ

4
1

)
(B5)

b52 =−e31γ (α1 − α2γ
2 + 3α2ω

2)

+ e33γ [c11 ∈11 −α3(γ 2 − ω2)

+ c44 ∈33 (γ 4 + ω4) − 6c44 ∈33 γ 2ω2]

− ∈33 γ [c11e15 − α4(γ 2 − 3ω2)

+ c44e33(γ 4 + 5ω4) − 10c44e33γ
2ω2]

+ 2e33γω2[α3 − 2c44 ∈33 (γ 2 − ω2)]

b53 = e31ω(α1 − 3α2γ
2 + α2ω

2)

+ e33ω[c11 ∈11 −α3(γ 2 − ω2)

+ c44 ∈33 (γ 4 + ω4) − 6c44 ∈33 γ 2ω2]

+ ∈33 ω[c11e15 − α4(3γ 2 − ω2)

+ c44e33(5γ 4 + ω4) − 10c44e33γ
2ω2]

+ 2e33γ
2ω[α3 − 2c44 ∈33 × (γ 2 − ω2)]
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